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A CONVERGENCE ANALYSIS 
FOR NONSYMMETRIC LANCZOS ALGORITHMS 

QIANG YE 

ABSTRACT. A convergence analysis for the nonsymmetric Lanczos algorithm is 
presented. By using a tridiagonal structure of the algorithm, some identities 
concerning Ritz values and Ritz vectors are established and used to derive ap- 
proximation bounds. In particular, the analysis implies the classical results for 
the symmetric Lanczos algorithm. 

1. INTRODUCTION 

Lanczos' algorithm is one of the most popular methods for computing some 
extreme eigenvalues of large symmetric matrices. An elegant theory and analy- 
ses of the symmetric Lanczos algorithm have been developed since the 1960's, 
which include error bounds of Kanial, Paige, and Saad (see [3, 7, 10] or [8]). 
At the same time, considerable effort has been made to generalize this work to 
nonsymmetric problems. The idea of tridiagonalization is naturally extended 
and yields a two-sided nonsymmetric algorithm (see [4, 9, 2]). However, sev- 
eral substantial problems, e.g., a breakdown phenomenon and a convergence 
analysis, remain unsolved. 

The Lanczos algorithm was originally introduced as a method to tridiago- 
nalize a general matrix [4]. Later it was found that it can be used to compute 
some extreme eigenvalues. It can be regarded, in particular, as a Rayleigh-Ritz 
projection method using Krylov subspaces; and based on this, a convergence 
analysis was established using the minimax theorem [3, 7, 10]. Since there is 
no minimax characterization for general matrices, this analysis cannot easily 
be generalized. Nevertheless, some approaches have been suggested in this re- 
gard. In [11] the idea using projection on Krylov subspaces is extended to show 
that some eigenvectors are close to the Krylov subspaces. The recent work [1] 
establishes some properties of the Lanczos polynomials which can be used to 
explain the convergence of the Lanczos algorithm. In [5, 13], by using a mini- 
max theorem, the classical method is applied to definite matrix pencil problems. 
However, the result there suggests that the classical approach may not be the 
best for nonsymmetric problems. We therefore take another look at the Lanczos 
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algorithm and find that it is essentially a method of approximating a tridiag- 
onal matrix using its submatrices. It turns out that employing the tridiagonal 
structure of the algorithm is an appropriate approach. 

We shall present a convergence analysis for the nonsymmetric Lanczos al- 
gorithms. Our analysis is based on the tridiagonal structure and is completely 
different from the classical approach. In particular, we shall reprove some clas- 
sical results, and some of our results are even new for the classical symmetric 
case. 

We first introduce the Lanczos algorithm in ?2. Then some identities are es- 
tablished for tridiagonal matrices in ?3. The approximation bounds are derived 
for Ritz values in ?4 and for Ritz vectors in ?5. Following that, the implications 
of this analysis to the symmetric Lanczos algorithm are discussed in ?6. Finally, 
some numerical examples are presented in ?7 and some remarks in ?8. 

Besides the standard notation in numerical analysis, we will use the following 
notation. I will denote an identity matrix and Im will specify the m x m 
identity matrix. eim will denote the ith coordinate vector of Rm, i.e., Im= 

[el, m, . em,m] 

2. LANCZOS ALGORITHMS 

In this section, we briefly introduce the Lanczos algorithms. The details can 
be found in [9] or [2]. 

Given a matrix A and two starting vectors xl and y, in C', the nonsym- 
metric Lanczos algorithm, in step m, generates sequences {xl, ... , Xm} and 
{y1, * ym } via a three-term recursion, so that 

A Ym -YmTm =m+lym+l em,m' 

XmA-TmXm= ym+lem mxm+lX 

and 

Xmm Im 

where Xm =[xl, ,xm], Ym = [y, y,Ym] and 

Tm=t 'f2 >..... 

< Am aEmv 

The algorithm continues until breakdown, that is, when Xm+iym+i = 0 at some 
step m. This is one of the serious problems in the nonsymmetric Lanczos 
algorithm (see [9] for a detailed discussion). Numerically, it is rare to have 
an exact breakdown. The real difficulty comes when the iteration is close to 
breakdown. In this theoretical analysis, we always assume that no breakdown 
occurs. 
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From the above construction, it is easy to see that 

(2.1) XmAYm = Tm 

and 

xmm 
= Im 

In particular, at step n, we have Xn = Yn1. Then A is similar to Tn, and 
the eigenpairs of Tn give those of A. This was originally used as a method 
to tridiagonalize a matrix A. However, the attractive feature of the Lanczos 
algorithm is that it usually stops at m < n, and some extreme eigenvalues of 
Tm can be used to approximate some eigenvalues of A. Specifically, at step 
m, we find the Jordan decomposition of Tm X 

(2.2) Tm = P*EQ, P*Q = I, 

where e is the Jordan canonical form of Tm . Then the eigenvalues of Tm (or 
0) are called Ritz values. Further, letting 

(2.3) U = [ul, *, um] = XmQ * V = [Vl,*,Vm] = YmP, 

we call u* (resp. vi) a left (resp. right) Ritz vector. We will show that some 
Ritz values and Ritz vectors give good approximations to the eigenpairs of A. 

If A is symmetric, we take the initial vectors xl = Y, . Then the algorithm 
yields Xm = Ym and a symmetric Tm, which is just the classical symmetric 
Lanczos algorithm. 

3. TRIDIAGONAL MATRICES 

The symmetric Lanczos algorithm has been successfully treated as a Rayleigh- 
Ritz projection method using Krylov subspaces. For nonsymmetric matrices, it 
can also be viewed as an oblique projection method (see [11]). The approach 
is, however, not as successful as in the symmetric case. As mentioned before, 
the Lanczos algorithm is closely related to its tridiagonal structure. To analyze 
the algorithm, we first consider tridiagonal matrices. 

In the following we always denote an n x n tridiagonal matrix Tn by 

a,E Y2 

Tn=tfi . . . 

f 1n anv 
k Lemma 3.1. Let Tm be a tridiagonal matrix; then e ImTmem m = 0 for k < 

m-2 and e* mTmem,m = 2 Ym* 
Proof. It is easy to check that, for k < m - 1, 

*k 

I'm mT = * * XY2- yk+Po .. ?X 0@ ), 

where the product of the y 's is in position k + 1. From this, the lemma 
follows. E 



680 QIANG YE 

The next two theorems establish some relations between a tridiagonal matrix 
and its submatrices. 

Theorem 3.2. Let Tm be the m x m leading submatrix of a tridiagonal matrix 
Tn. Then 

(3.1) e, nTn = (el, mT, O) for k < m-l 

and 

Tkei= Tmel,rn) 

Proof. We prove (3.1) only. Let 

T=(T^ E ) E(? Tnrn) 

where E = Ym+lem,mel,n__ and E = fm+lel,nrmem,m. If, for some k < 

m-2, 
* k * k 

e, nTn =(eirmTm r?), 

then 

e knT =e v - k+1 k+ kmr'n1 rTE)(,nT l,) e* Tk (e* T, O)T =-(e* mTk+ e* mTkE)-(e* T+ ln n - I, - lmms , , 

where by Lemma 3.1, el'm TAE = ym+lel,mTmemrmel, n-m = 0. Hence the 
theorem follows by induction. 0 

k k Conceptually, this theorem says that Tm and Tnk have essentially the same 
k k first row (column) for k < m- I. Furthermore, Tm and Tnk have the same 

(1, 1) element for k < 2m - 1, as shown in the next theorem. 

Theorem 3.3. Let Tm be the m x m leading submatrix of a tridiagonal matrix 

Tn. Then 

(3.2) el,nTnel,n=el,mTAelm fork<2m-1 

and 
* 2m * 2m 

(3.3) e*n Tn'eln=el,mT e*n + fl2,. ,Bflm+y2... Ym+1 

Proof We first prove by induction that, for k > m + 1, 

(3.4) e Tnk (el TT+elmT lETk EET 1 
k-m-2 

+ej mn Z GiTm' er,H)mH 
i=O 

where Gi and H are m x (n - m) matrices. 
From (3.1), we obtain 

e, nTn+ = (eloMTrn+l PmTm F eEnmH), 
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ml1 where H = T E + Tm l ETnrnm. We now assume that (3.4) is true for some 
k >m+ 1. Then, for k+ 1, 

* k+l (* k+l * rm-i k-m e 
yelrnTrn +e,rnTrn EETrn 

k-m--I 

+ el,m _EZ Gi'ETm+er mHE',ei'mH), 
i=l 

where H = TkE + Tr E knE + EijOr2 GiETAE + HTn-m. Letting 

Gi = Gi and Go = H, we obtain (3.4) for k + 1 . So (3.4) is proved. 
Now, for k < m, (3.1) leads to (3.2). For m + 1 < k < 2m - 1 and 

k = 2m, (3.2) and (3.3) follow from (3.4) and Lemma 3.1 by a straightforward 
computation. 0 

We remark that it is possible to derive some formulae of form (3.3) with 
larger exponent k by using (3.4). The resulting expression, however, will be 
very complicated and of little use. 

4. ERROR BOUNDS 

This section will develop error bounds for Ritz values. We define Pk to be 
the set of polynomials of degree not greater than k, and MPk to be the set of 
monic polynomials of degree k. 

Let the Lanczos algorithm be applied to a matrix A and 

A=ZrAZi , Z ZrI 

be the Jordan decomposition of A. Then Zr = [zr), ...Z, <n (resp. Z1 = 

[z(7), ..., z(')]) contains the right (resp. left) eigenvectors and the generalized 
eigenvectors. Letting 

(4.1) X=ZrXn=(x1Z) and Y=ZY =(yij), 

with Xn, Yn being generated by (2.1), we have 

(4.2) Tn = X*AY 

and 
X*Y=I. 

Note that x11 = zir)* x is the z component of the initial vector xl , i.e., 
n 

(4.3) xi = Exilzi 
i=l 

and .yi1 = zl)* y1 is the z(r) component of the initial vector y , i.e., 
n 

Y, = Eyilzi 
i=l 

Using the properties obtained in ?3, we establish the first theorem. 
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,Theorem 4.1. Let X = (xij), Y = (yij) and P = (pij), Q = (qij) be defined as 
in (4.1) and (2.2), respectively, and let 

A =diag[Al, As+l A***' n] ' e) = diag[e), Ot+l O m]' 

where 

~e sxs, ~E txt 
fil ~ ~ ~ 1 0 Al =( E C , l =( E C 

Then, for any f E p2m-l 

s-1 n t-1 m 

(4.4) Zf?(i)l)ti + E f(d)Xy1 = E f(i) (o i + E f(i)Til qil 
i=O i=s+l i=O i=t+l 

and, for any f EMP2, 
s-l n 

E f?i)(Ao)o)E + E f(Ai)yilYi 
(4.5) 

1=0 
i=s+l 

t-l m m+1 

= Zf()(61)C)i + E f(Gi)Tilqil + fJ 8jyjl 
i=O i=t+l j=2 

where o = I i Xjly(j+I)l, and = Ej=lpjlq(j+i), I 
Proof. Substituting (4.2) and (2.2) into (3.2) of Theorem 3.3, we obtain 

e nX*A kYen = e PmP* kQeim I,n I,n Im 1' 
for k < 2m - 1. Then, for any f E p2m-1, we have 

e* X*f(A)Yen = emP*f(0)Qel m. 

A straightforward computation from this proves (4.4). Similarly, we can prove 
(4.5), using (3.3). C1 

We can use this theorem to derive some identities concerning approximation 
errors. We state the following theorem for a diagonalizable matrix. 

Theorem 4.2. Let A be a matrix with n distinct eigenvalues and jI) - Okl = 

min3 1 1 - oil. 
(1) If k > 2, i.e., Ok is a semisimple eigenvalue, then, for any h E p2m-2 

Al (R Ok 
= 

I E (A i k ) h(Ai )Yi lyi l 

(4.6) t-+ m 
+ E h(i= )(i)0 i + E (Oi - Ok)h(oi)Pilqil)' 

i=O i=t+l 

where ai = (01 - Ok)( i + (i + 1) 
' 

i+lwihO=? 
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(2) If k = 1, then, for any h E p2mt- 

( -H 601 = h ( .)x)y ( - (2-6i 2 XilY 

n 

(Al - k)h(Al)Xllyll + - Ok)th(A)xlYil 

i=2 

t-l m 

= Zf ~(6l)(i+ E (6i - O0)h(Oi)PiIqiI. 

i=O ~~~i=t+l 

It is easy to check that 

This leads to (4.6). 
(2) For k = 1 , wesubstitute f(x) = (x--1)th(x) into (4.4). Since f(o)(Qa) - 

0, l<i<t-l,weget 

ni m 

- 61)th(,%)x +-Al- khhyyI + E(Ai-1) y = >E (Hi - 1)yj 
i=2 i=t1+ 

This leads to (4.7). 0 

Obviously, our method is not restricted to diagonalizable matrices. Instead, 
it applies to any eigenvalues of a general matrix. For instance, if A1 is an 
eigenvalue with Jordan block of size s, we can use f(x) = (x - o )Sh(X) in 
(4.4) and subsequently obtain similar identities. However, the results are more 
complicated. Such statements are therefore simply omitted. 

To use the theorem, we choose for h a polynomial p so that Pp.1) = 1 and 
p(Ri) (i # 1), P(AI) (i k) are as small as possible. Then the right-hand side 
of (4.6) or (4.7) is a small number, and ). - k can be bounded by this number. 
Clearly, the magnitude of the bound depends on the distribution of Int, ad. On 
the other hand, comparison between (4.6) and (4.7) suggests that convergence 
of a Ritz value with Jordan block of size s is expected to slow down by an 
order of s. 

To present some detailed bounds, we will concentrate on the case where 
both A and Tm are diagonalizable. Let :(A) = ...-, An} and s(Tm) = 

{6Ca, ... m' be the spectra of A and Tme respectively, and let 
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We then define 

e(k)(S) - inf max lp(x)I 
PEP p,p(A1 )=I XES 

and 

(1 (S) max { x -l |1 I A -A:x E Oal U O^ } 

for S c a' U1 a 

Corollary 4.3. Let A and Tm be diagonalizable, with a(A) = ... An 
and U(Tm) = {fi1 . m} . Assume that JA1 - 6j I = minj 1J1 - 6jl, and let 
(1 ={2 *Xn' In} (1=02, 0 m 

(1) If a1 u 61 = S1 u S2 with S1 and S2 disjoint, and s = 1S21 < 2m - 2, 
then 

Ii - ol < ?(2m-2-s)(S 

(4.8) x (i=2 IXilI + Ei=2 PilI)' (I p=2 IY1i2 + Em 2qi 2)1/2 

(2) If a1 S1 uS2 with S1 and S2 disjoint, and s = IS21 < m - 1, then 

(4.9)~~ (m- -S)(S (S or f ) (i=2 IXi l I) i=2 |yi l I 

Proof. (1) Substituting h(x) = p(x) rIAES (X - A) for any p E p2m-2-s with 

P(AI) = 1 into (4.6), we obtain 

JI- Oil 
I - E (Ai -6I)P(A1)Y11.v II A) 

21 01l= x 
lyl 

|- 
(ES0)(2)ili AE (Ali 

+ ,(61-61)p(6i)Pi1qi rJi (A-) 

xiES1 /1xES2 
? Xmeax lp (x) 1 J (S2) ( xilyi, I + lpil qil Il)x ly / 

< maxIp(X)I1[(S2)(i=2 1x1I + Emi211 2)1i 

XESI 1x111 

(>.11=2 Lyil1I 
+ 

Eim2 1qil I11 
lyl pl 

This proves (4.8). 



CONVERGENCE ANALYSIS FOR LANCZOS ALGORITHMS 685 

(2) Substituting h(x) = p(x) les2ua, (x - A) for any P E Pm - with 

P(AI) = 1 into (4.6), we obtain 

JAI - Ol = 1 E (Ai - 0I)P(Ad7iIYi _(Ai ) 
)xiyl AES1 IES2U&1 (Al - A) 

? xmEaSxip(x)k(S2 Ual) (p2=2 1x1 2)1/ (12 =2 7 I1 12) 1/2 

XESI 
S2U' 1x111lli 

This proves (4.9). 0 

We now analyze the magnitude of k)I(S1). In [11], it is proved that if 
k < S1LJ, then there exists {fa, ..., ak+1} C S1 such that 

IC(k) 1S ) Jai 
- -1 

(,=1 i34 I i Jl 

Furthermore, it is shown from this that 8(k) (S1) is small when A1 is well sep- 
arated from {a ... , ak+1 }. For details see [11]. Another analysis can be 
conducted using Chebyshev polynomials [11, 6]. Let S, lie inside an ellipse 
and A, lie outside of it and on the major axis. More specifically, by a shift and 
rotation we can assume that A, = 0 and S1 lies inside of the ellipse E which 
is centered at d and has foci at d + c and d - c and semimajor axis a with 
O < c < a < d (i.e., the real axis is the major axis of E and the origin lies 
outside of E). Let Tk(x) denote the Chebyshev polynomial of degree k on 
the interval [-1, 1] (see [6] or [8] for a detailed definition). Then 

min maxlp(x)I = maxtPk(x)I = Tk () /Tk 
PEP k,p(A,1)=l xEE XEE C 

where pk(X) = )Tk(d) (see [6] and references therein). Hence, 

(4.10) e( )(S) < Tk ( I) /Tk (-) 
Since 1 < a? < . we have Tk(g) < Tk(4). Furthermore, the bigger the 
differencebetween a and d d the smaller is the bound of (4.10). Note that d 
is a measure of separation of A1 from E, and a is a measure of flatness of 
the ellipse E. 

On the other hand, if s = JS21 is small, 61 (S2) is a bounded number. If 
S = JS21 is large and, in addition, Ix - Al < lli - Al for most A E 52 and any 
x E S1, then 61 (S2) is a product of s numbers, most of which are less than 
one. Hence it is a small number. 

Thus, for an extreme eigenvalue AI, we can partition a, U c^ into a union of 
S1 and S2, so that S1 lies in a flat ellipse well separated from A, and t = 1S21 
is small. Then Corollary 4.3 says that we can expect a good approximation 
bound for A 
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An alternative partition is by taking S1 and 52 C a, Ua1 in (4.8) (or S2 c a' 
in (4.9), respectively), with IS21 = 2m-2 (resp. IS21 = m- 1). Since e(?)(S1) = 

1 , we have the following 

Corollary 4.4. Under the hypotheses of Corollary 4.3, we have 

JAI1 - 6jl ? min 31 (S)( =2 jXil I2 + ~i=2 Ph 12)1 

SCau&j, ISI=2m-2 1x/ll 

np= y12 +2z112 (Ei-=2 lyil I + Emi 2 lqil I 

and 

(4.11) j| -o | < min 1 (S u a-,) (=2 1xil ) (pi=2 lyi j)II 
SCa1, ISI=rn-1Ii 

Finally, we remark that analogues of Theorem 4.2 and Corollaries 4.3 and 
4.4 can be obtained by using (4.5) with polynomials of higher degree. However, 
this increase in degree is not significant, and all such statements are therefore 
omitted. 

5. RITZ VECTORS 

In the previous section, we only considered the convergence of Ritz values. 
We note that the behavior of Ritz vectors could be quite different from that of 
Ritz values. In some cases it is more appropriate to consider Ritz vectors and 
invariant subspaces, e.g., when there are some close eigenvalues, or eigenvalues 
with Jordan block of size greater than two. 

In this section, we give an analysis for Ritz vectors. Again, we use the prop- 
erties of tridiagonal matrices developed in ?3. For simplicity, we always discuss 
the case where both A and Tm are diagonalizable. 

Theorem 5.1. Assume that A and Tm are diagonalizable. Then, for any f E 
pm-l 

n m 
(5.1) EZi(f(AY=y Evf(Oj)qji 

i=l ~~~~i=l 

where z(r) are the right eigenvectors and vi the right Ritz vectors. 

Proof. By Theorem 3.1, for any f E pm-i, 

= (f(Tm)ei,m) 

By (4.2) and (2.2), we have 

X* f(A) Yel n = (P*f(0)Qei.m) 
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or 

Zrf(A)Yel n = Yn(Pf(()Qelm) = Vf(E0)Qelim 

Expanding this, we obtain (5.1). D 

For some Ak and 01, which are close to each other, we choose f so that 
f(Ai) (i :# k) and f(0i) (i :# 1) are small and f(Ak) = 1. Assume that 

f(0j)qjI # 0. Then 

vl = ax(zk + We)' 

where a is a constant and 
W (r) Yl_ f fJ qi I 

we Z Z )f(q.d -i ZV.f(0.)?. 
i#k Ykl i#l Ykl 

is a small vector compared to z(r) A particular choice of gl(x) 
(x - 01) ... (x - 01_1)(x - 01+1) ... (x - Om) yields an expression of v, in terms 

of z (r) 

Corollary 5.2. Let gl(x) = (x - 01) ...(x- 01_)(x- 01+) .(x -Om). Under 
the hypotheses of Theorem 5.1 and qll :# 0, we have 

n 

V = a E i di)i 
i=l 

for some constant a. 

For a fixed l, there are some Ai close to Oj (j #A 1), in which case g1(1i) is 
relatively small. Hence, v1 is close to some spectral subspace, though 0A may 
not be close to any eigenvalue. So in this case, v1 can make a good starting 
vector to find the remaining eigenvalues. 

6. THE SYMMETRIC CASE 

In this section we apply our techniques to the classical symmetric case. In 
particular, we are going to derive some generalizations of the classical bound. 

For a symmetric matrix A, all the eigenvalues Ai and the Ritz values are real. 
Let A < ...< An and 01 < < Om. Then Ai < 0i for i = 1, ..., m. The 
classical convergence analysis compares Ai with Oi, which is not necessarily 
the best approximation to Ai. For example, if the initial vector xi has a 
significantly small component in the direction of the eigenvector associated with 
Al, then 01 will converge to A2 first. In such a case, a bound on JAI - All is 
irrelevant. Without using the minimax theorem, our method does not require 
this match in ordering. This allows us to compare an eigenvalue with the Ritz 
value that is closest to it. 

When considering the left end of the eigenvalues, we note that Oi decreases 
as m increases. Then an approximation of 0A to Ak can only be improved if 
01 > Ak' Otherwise, 0A will depart from Ak and approach Ak-li From this 
point of view, we naturally consider Ak approximated by some 01 > Ak. 

We have seen in ?2 that the symmetric Lanczos algorithm can be obtained 
by taking xi = Y1 in the nonsymmetric case. Furthermore, we have Xn = YnX 
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X = Y, and P = Q. Combining this with the previous results, we obtain the 
following 

Theorem 6.1. For a fixed Ak I let 01-l - Ak < 0 < 01 - Ak (where 00 = -x) 
Then 

l'Ak 
- 

oiilln-Ak lk 2 
inff 

max l(ilh lik-0ll<lin- jw klv k+l<ai<nl ):E } 

where D= {h E P2(m-1) :h(Ak) = 1, h() < 0 (1 < i < 1- 1) and h(61) > 0 
(1+1 <i < m)}. 
Proof. By Theorem 4.2, for h E cD, we have 

22 

0? -Ak+al= EiZk(Ai - O1)h(Ai)jxi1j - 4i'l(oi - 0j)h(0i)jp1 
1 

?<-k 
+ 

I1=- h(Ak)lXil 
12 

En 
2 

h (hk)k)Xil I2 En ~~~~2 

< |ln IAk k , hXil maiX I h(11d I k 
lXkl 12 k+l<i<n 

This proves the theorem. 0 

Now consider the polynomial 

h(x) =(X- 0) 
2 

(_al122 
2 

(x 
- 

Ak+ - 
An) 

It is easy to see that h(x)/h(Ak) E (). Hence, we obtain the following more 
general form of the classical bound (see [8]). 

Corollary 6.2. Under the hypotheses of Theorem 6. 1, 

Vik 01l?<V|ln Ekl l I-I (A / () k k+ 
lXkll I 1=1 (Ak i n~ / k '~ k+1 j 

For Ritz vectors, Theorem 5.1 and Corollary 5.2 apply and give two new 
results. In particular, we notice that Em I vif(6i)qil lies in the Krylov subspace. 
Taking 

h(x) =(x -01) ..(x - 0-O)TM-l ( -i )k1-A 

in Theorem 5. 1, we can obtain the bound of Saad concerning eigenvectors. We 
will not state this result, but refer to [10] or [8] for the details. 
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7. EXAMPLES 

We present two simple examples in this section. Both are taken from the 
nonsymmetric examples of [1]. For the sake of computational convenience, we 
have used bound (4.11) in our calculation. 

Example 1. Let the matrix be 

A = diag[70 - 70i, -40 + 80i, 8 - 7i,I - 5i, 8] 

= diag[.1, A2 A3 A4I 5]' 

and the initial vectors be xl = Y1 = [1, 1, 1, 1, 1]*. Then for m = 3, the 
three Ritz values are 

el = 69.9 - 70.0i, 02 = -40.0 + 80.1 i, 03 = 4.9 - 4.0i 

to one decimal digit of accuracy. By taking S = {f2 , A5} in (4.1 1), we obtain 

the bound 0.346 for Al - 01. By taking S = fA, )A5}, we obtain the bound 

0.348 for A2 - 02 

Example 2. In this example, 

A = Udiag[1O, 13 - 4i, 7 + 3i, -80i, -20+ 90i]U- 

= U diag[A5 A49 23X9 A29 Al]U- 
1 

A 

with U and the initial vectors chosen randomly as 

(2113 + 29221 6284 + 5015i 5608 + 9185i 2321 + 2860i 3076+ 6857i 
7560+ 5664i 8497 + 4369i 6624+ 0437i 2312+ 1280i 9330+ 1531i 

U = 2 + 4826i 6857+ 2693i 7264 + 4819i 2165+ 7783i 2146 + 69711 i 
3303+ 3322i 8782 +6326i 1985 +2640i 8834 +2119i 3126 + 8416i 
6654+ 5935i 684+ 4052i 5443+ 4148i 6525+ 1121i 3616 + 4062i] 

and 
I .0942 + 0.2736i 

0.6524 - 0.1925i 
x1 =y = 0.6630 - 0.7264i 

0.4387 + 0.5967i 

<0.0888 + 0.5170i 

For m = 3, the three Ritz values are 

61 = -19.9524+90.2763i, 02 = 0.1894-79.8844i, 03 = 11.6666+0.9774i. 

By taking S = {A29 A4} in (4.11), the bound for Al - 06 is 0.435. By taking 
S= {21' 3} the bound for A2 - 02 is 1.62. 

8. CONCLUSION 

The analysis of the nonsymmetric Lanczos algorithm is considerably more 

complicated than that of the symmetric one. In this paper, we have developed a 

convergence analysis which leads to the classical results for symmetric matrices. 

To our knowledge, it is the only analysis of this kind. Furthermore, the analysis 
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of Ritz vectors is new and demonstrates that some Ritz vectors which do not give 
good approximations of eigenvectors may still be close to some small spectral 
subspaces. 

We remark that all the approximation bounds derived in this paper are not in- 
tended to provide a practical computable estimation of the number of iterations 
needed, but rather to demonstrate the convergence of the Lanczos algorithm. 

As is known, the error bound for the largest or smallest eigenvalue in the 
symmetric Lanczos algorithm depends only on the matrix A and the initial 
vector x1. In contrast to this, the bounds for all eigenvalues in the nonsym- 
metric Lanczos algorithm depend on Ritz values as well. Unfortunately, there 
is no guarantee that Ritz values will be well distributed. Indeed for nonsym- 
metric matrices, the Ritz values can be anywhere in C. Then there could be 
no convergence at all. At this point we should mention that when we talk about 
convergence of the Lanczos algorithms, it is not strictly in the sense of math- 
ematical convergence, even for the symmetric Lanczos algorithm. As is shown 
in [12], there are always contrived choices of initial vectors that give rise to 
nonconvergence of the Lanczos process. From this point of view, it is not rea- 
sonable to expect a bound that guarantees convergence all the time, but only 
a bound that reveals the convergence behavior. Of course, a bound depending 
only on the matrix and the initial vectors would be most desirable. 
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